Locks and keys

Elkanah Watson Lock
An early American woodcut of a canal lock in action, from the title page of “History of the Rise, Progress, and Existing Condition of the Western Canals in the State of New-York,” by Elkanah Watson, 1820. (Library of Congress)

The early proponents of the Erie Canal were a remarkable group. Jesse Hawley, Elkanah Watson, and Gouverneur Morris showed great imagination — and risked being labeled as madmen — when in the early 19th century they individually proposed constructing an artificial river from the Hudson to the Great Lakes.

Hawley — a grain merchant with no advanced education — accurately predicted the canal’s route and final cost in a series of essays written while serving time in a Canandaigua jail for bankruptcy.

But these men were not engineers, and one detail they initially could not grasp was how, exactly, the canal would surmount the 568-foot difference in elevation between tidewater and Lake Erie. The general consensus was that the canal would be constructed as an inclined plane that gradually descended as it made its way, west to east, across the state.

The heavily glaciated terrain of New York state presented a serious obstacle to this plan. The canal would have to cross several rivers and valleys, including the wide, flat bowl of Cayuga Marsh. Enormous embankments would be needed to maintain a consistent slope across all of these elevations, and the mere thought of constructing these eventually made it clear that the whole idea was, well, crazy.

Lock 10 ft. Lift
An undated scale drawing of a lock with a 10-foot lift. The triangular frames on the floor of the lock chamber are the miter sills, against which the lock gates were closed. The overall dimensions of the chamber match those of the locks on the first Erie Canal, though most of those had a lift of 8 feet. (John B. Jervis Drawings, Jervis Public Library, New York Heritage Digital Collections)

A more practical solution was the miter gate lock, invented in the late 15th century by Leonardo da Vinci.

A canal lock is basically a long chamber, large enough to accommodate a ship, boat, or barge, with a watertight gate on each end. After a vessel enters the chamber the gate behind it is closed and the water level inside is raised or lowered as needed. Then the other gate is opened to allow the vessel to continue on the new level.

The principle of the canal lock had been known for some time, and various types of gates had been used with varying degrees of success. Da Vinci’s innovation was simple but brilliant. The inside frames of his lock gates were mitered so that, when closed, the gates formed a V with the point facing the upper water level. The pressure of the water against the V forced the gates together, ensuring a tight seal.

Da Vinci’s design subsequently was used throughout Europe and for canals in the United States, including the Erie Canal. It is still used on canals today.

Profile fo the Levels of the Grand Canal
A profile of the Erie Canal, published in the margin of an 1827 map of New York state, shows how the canal climbed, lock by lock, from the Hudson River to Lake Erie. (David Rumsey Map Collection)

By the time work began on the Erie Canal, American engineers had already mastered the basics of lock construction, by trial and error, on earlier projects such as the Middlesex Canal in Massachusetts and the canals of the Western Inland Lock Navigation Company. Both wood and stone had been used as building materials. Over the years the many problems encountered with wooden locks convinced the Erie engineers that all of their locks should be built of stone, despite the higher initial cost.

In all, 83 locks with an average lift of eight feet would be built to lift the canal from tidewater at Albany to Lake Erie at Buffalo. The difference in elevation was 568 feet. But the descent at Cayuga, and a smaller one near Syracuse, increased the total rise and fall to 692 feet.

Original Erie Canal Lock 62
Lock 62 in Montezuma is one of very few surviving locks from the original Erie Canal. This was a guard lock that lowered boats to the level of the Seneca River so they could cross to the other side. Most of the chamber has been filled in with earth, but remains of the stone wall are visible. The dark, notched stone near the center indicates the location of a quoin pier that supported one of the lower gates. (Steve Boerner)

The standard lock chamber size on the first Erie Canal was 15 by 90 feet, which could accommodate vessels 78½ feet long by 14½ feet wide. Most locks had a vertical lift of eight feet (or less), though some had lifts of 9 or 10 feet and, in the case of the famous flight at Lockport, 12 feet.

Original Erie Canal Lock No. 20
Original Erie Canal Lock No. 34, near Fort Hunter, Montgomery County, as it appeared in 1969. The lock is intact, but has since been filled in with earth to prevent the walls from collapsing. (Jack E. Boucher, Historic American Engineering Record, Library of Congress)

In a few locations, such as Lockport, the lock chambers were excavated out of solid rock. In others they were anchored directly on underlying bedrock. But in most places the bedrock was too deep and out of reach. There, hundreds of piles would be driven. On top of those a timber raft or mat would be laid and reinforced with planking. On top of this the stonemasons would construct the walls of the lock chamber.

Samuel Fenn Drawing
A lock pit for the Enlarged Erie Canal is a hub of activity in this 1855 field-book sketch by canal engineer Samuel Fenn. A surveyor, upper left, and rodman, center right, check levels while workers haul dirt and rubble up a makeshift wheelbarrow ramp to the top edge of the excavation. Three men on the floor of the pit place the timbers that will support the stonework. The ubiquitous whiskey jug is strategically positioned at the lower right. The sitting figure at lower left may represent Fenn himself, busily taking notes or, perhaps, penciling this sketch. (Series B0730, New York State Archives)

The process of building a lock was outlined in an 1826 proposal submitted by contractor David Fitzgerald to the canal commission:

“I propose to construct the Lock which is required on the Eastern section of the Erie Canal near Waggoner[’]s for the consideration of nine hundred dollars a foot lift, of the finding all materials . . . to the excavating the pit, piling and preparing a solid foundation, quarrying cutting and laying the masonry and completing the wood and Iron work and embanking puddling [and securing] the Lock. . . . The Lock to be fully completed in the month of September. . . . Lock 8 foot lift”

C&O Lock No. 55 Miter Sill
The wooden miter sill and floor planking of Chesapeake & Ohio Lock No. 55 in Maryland can be seen in this photo, taken in 1959–60. The lock gates are missing, but a recess in the lock wall for one of the gates, including the rounded pier for the gate’s quoin post, is visible at left. When the gate was closed, water pressure would have pressed it tightly against the quoin pier and miter sill, ensuring a tight seal. Locks for the first Erie Canal were also built this way. (Jack E. Boucher, Historic American Buildings Survey, Library of Congress)

Lock chamber walls were constructed of dressed stone, often quarried locally. For mortar, the masons initially used quicklime but soon adopted a new, much superior hydraulic cement developed by canal engineer Canvass White.

The stonemasons were craftsmen and they built things to last. But time and subsequent development have taken their toll. The remains of several 19th-century Erie Canal locks survive across New York state, but nearly all date from the First Enlargement, 1834–1862, or later. Surviving locks from the original canal are rare, so we have few direct references that can be used to help us create an accurate digital model of an original Erie Canal lock.

Fortunately, there are good, surviving examples of locks from other canals of the same period and a few contemporary drawings that we can turn to.

C&O Lock 4
Vintage automobiles provide a sense of scale in this 1935 photo of Chesapeake & Ohio Lock No. 4 in Georgetown, Washington, D.C. C&O locks were built about the same time as those of the first Erie Canal, and to the same dimensions. (Albert S. Burns, Historic American Buildings Survey, Library of Congress)

Two other canals in particular can provide the information we need.

Construction of the Chesapeake & Ohio Canal began in 1828, a little over two years after the opening of the Erie Canal. It originally was planned to extend from Washington, D.C., to the Ohio River at Pittsburgh. But in 1850, after years of delays, labor unrest, and cost overruns, construction ground to a halt at Cumberland, Maryland.

Despite the fact that it was never truly completed, the C&O proved to be an efficient way to move coal from the Allegheny Mountains to the East Coast, and it remained in operation until 1924.

The C&O canal prism and locks were built to dimensions similar to those of the Erie Canal. But unlike the Erie Canal, the C&O was never enlarged. Many of its original structures remain in good condition and have been carefully documented by the National Park Service. Photographs, plans, and reports created by the service’s Historic American Buildings Survey (HABS) and Historic American Engineering Record (HAER) are kept at the Library of Congress, and most are available online.

Lock and Butterfly Valve
Drawings of early 19th-century lock gates used on the Ohio and Erie Canal, drafted in 1987 by Alan J. Rutherford of the U. S. Department of the Interior, show details such as the quoin post anchor irons, butterfly gate valves, and keys, which were the iron handles used to open and close the valves. Similar gates would have been used for locks on the first Erie Canal. (Alan J. Rutherford, Historic American Engineering Record, Library of Congress)

Much the same is true for the Ohio and Erie Canal, constructed from 1825 to 1832 to connect Lake Erie at Cleveland to the Ohio River at Portsmouth. Although most of the Ohio and Erie has not survived, sections of it have been preserved and documented by the park service.

My digital lock model is based primarily on a plan and elevation drawing found among the papers of Erie Canal engineer John B. Jervis and preserved at the Jervis Public Library in Rome, New York. (Another drawing from this collection served as the basis of a digital model of the Little Falls Aqueduct.) The drawings show a lock of 10-foot lift, but it is easily adapted to fit the more usual 8-foot lift.

Canal lock in Blender
Model of a canal lock in the Blender workspace. The model is based on a lock diagram found among the papers of canal engineer John B. Jervis.

The model includes many details that will be hidden — below ground level or under water — when it is placed in a scene. These include the counterforts, buttresses that helped support the stone chamber walls; miter sills, which supported the lock gates when they were closed; and the gates’ butterfly valves, which were opened and closed by turning iron handles referred to as “keys.”

Canal lock in Substance Painter
The finished canal lock model, shaded and rendered in Substance Painter.

Once the model is finished, surface detail and color are added in Substance Painter. Two copies of this model will be placed in the Little Falls scene to represent original Erie Canal locks 44 and 45.

Detour to Little Falls

View on the Erie Canal
This 1831 watercolor by John William Hill, “View on the Erie Canal,” may be our finest contemporary image of the handsome new aqueduct at Little Falls. The view looks south across the Mohawk River. Fall Hill dominates the skyline. A solitary boat crosses the aqueduct. Meanwhile an industrious party of men, wielding sledgehammers and crowbars, breaks up an exposed shelf of stone in the foreground. (The New York Public Library)

The village of Little Falls was once one of the most famous locations along the original Erie Canal. Early lithographs, engravings, and paintings show packet boats traversing the wild, romantic landscape as the canal skirts boulder-strewn rapids and rocky cliffs.

But today the original Erie depicted in the lithographs is long gone. The canal enlargement of the mid-19th century and construction of the New York State Barge Canal in the early 20th blasted or drowned many of the cliffs and rocky islands that had long distinguished this section of the Mohawk River.

It is hard to imagine how this place once looked, and easy to forget why it played such an important role in our early history.

Little Carrying Place
The portage around the Little Falls of the Mohawk River is indicated by a dotted line on a detail of a map drawn around 1756. North is to the right. (William L. Clements Library, The University of Michigan.)

The Little Carrying Place

The Little Falls were so named because they were the lesser of two major obstructions to navigation on the Mohawk River. Cohoes Falls, directly above Albany, was a more significant barrier. The Little Falls in turn were not even a waterfall so much as a bottleneck. This was a place where the valley narrowed dramatically and the river swirled around large boulders along a series of shallow rapids. The rapids extended three-quarters of a mile and dropped about 40 feet.

This was enough to force early navigators to beach their bateaus on the riverbank and drag them, along with their cargo, to the other end of the rapids. The section became known as the Little Carrying Place, and later, as the settlement of Little Falls took shape, businesses sprang up to provide room, board and other amenities to weary boatmen working their way up- and downriver. Eventually portage companies were formed which, for a fee, carted goods and boats on large wagons.

Building a bypass around the rapids became a top priority for the Western Inland Lock Navigation Company, chartered in 1792 to improve river navigation along the Mohawk. Construction of a short canal with five narrow locks soon commenced, employing “nearly three hundred laborers, besides a competent number of artificers,” according to a company report. Despite chronic financial problems, the difficulty of excavating through solid rock, and a lack of engineering experience on the part of the company’s officers, by November 1795 the canal around the Little Falls was completed “as to allow the passage of boats.” The village now had its own canal basin and waterfront.

Little Falls Holmes Hutchinson Map
A detail from the Holmes Hutchinson map of Little Falls, surveyed around 1830, shows the parallel channels of the Western Inland Lock Navigation Company canal (top), the Mohawk River, and the Erie Canal (bottom). The aqueduct allowed Erie Canal planners to use the old canal as a feeder and mollified the citizens of Little Falls by connecting their existing basin and waterfront to the new canal. (New York State Archives)

Unfortunately – from the point of view of local residents and merchants – twenty years later surveyors would locate the new Erie Canal on the opposite side of the Mohawk, threatening to leave Little Falls high and dry.

The solution was to build an aqueduct to connect the new canal on the south bank to the old one on the north, and like all good solutions it included something for everyone. Little Falls would be connected to the new canal, making its waterfront accessible to freighters and passenger packets. In turn, the old canal would become a water source — a feeder — for the new canal. And, incidentally, boats on the Mohawk could now come and go as they pleased between the river and the new canal.

‘This splendid work’

The new aqueduct would be one of many built along the Erie Canal. The Genesee River Aqueduct at Rochester would be the longest, at 802 feet. Others, built on the lower Mohawk, may have been more impressive feats of engineering. But none could match the aqueduct at Little Falls. The graceful, arched design, juxtaposed against the wild Mohawk River gorge, would be seen as vivid evidence of the victory of art over nature.

The aqueduct was constructed in 1822 by Ara Broadwell of Utica, a mason and contractor who had been building locks, culverts, and aqueducts along the canal since early 1818. The cost of the work, which took only about eight weeks to complete, is not itemized in the 1823 state comptroller’s report, but the report does specify $45,532.50 paid the previous year to Broadwell for stonework on the aqueduct and seven locks above the Falls.

Clinton Fire Company No. 41
A lithograph published in Cadwallader Colden’s 1825 “Memoir” juxtaposed one of the floats in the celebratory New York City parade against a fanciful representation of the Mohawk River at Little Falls, with the new aqueduct dominating the natural landscape. (The New York Public Library)

The aqueduct’s opening was noted in the Oct. 22, 1822 edition of the Utica Gazette in an item widely reprinted in other New York state newspapers:

“The aqueduct across the Mohawk river at Little Falls was finished last week and filled with water. This is a structure of considerable magnitude, built entirely of stone, and in point of solidity and beauty, probably not exceeded by any work of the kind in the United States.”

In their 1823 report, the canal commissioners fill in a few important details:

“The aqueduct is a handsome structure of hewn lime stone, consisting of three arches, with abutments and piers resting on a foundation of solid rock; the centre arch of seventy feet chord spans the river; the other two are of fifty feet each . . . . The whole work supports two parapet walls, four feet broad, four and a half feet in height, and measuring two hundred and fourteen feet in length, and having a water way between them of sixteen feet.”

Little Falls Aqueduct
An 1825 watercolor by John Henry Hopkins shows a view of the aqueduct and its wrought-iron railing looking north to the village of Little Falls. (Hopkins Family Papers, William L. Clements Library, The University of Michigan)

The opening ceremony did not go quite as planned. A perhaps unintentionally droll account published a few days later in the Little Falls People’s Friend is worth quoting in full:

“Thursday, the 17th inst. having been named as the day when the first boat would pass over this splendid work, an immense concourse of people were assembled to view the operation. By about 3 o’clock P. M. our streets were rendered almost impassable by the crowd; the anxiety to see all that was going on was really surprising. At length the water was admitted from the old Canal and poured rapidly across to the new. All eyes were now directed to behold the first glimpse of the anticipated Packet-boat, and ‘expectation fairly stood on tip-toe.’ At this moment, a skiff entered from the Basin, and in this little barque, Capt. Robert Gillespie, of German Flatts, William, son of the late Wm. Alexander, and James Dowling, obtained the honor of being the first navigators of the Little Falls Aqueduct. But unfortunately, an accident soon after happened to the banks at the junction of the Aqueduct and the Erie canal; and it was found also, that the former, from the mortar’s not having had time to dry, emptied the water through the arches. These circumstances prevented the packet from passing that day, and greatly disappointed the spectators. But the deficiency will soon be supplied, and visitors may shortly be gratified with the wished for sight every day.”

Little Falls Aqueduct
This undated drawing of an aqueduct is attributed to early American civil engineer John B. Jervis. Beneath the title in the center someone has penciled “Little Falls of Mohawk.” (John B. Jervis Drawings, Jervis Public Library, New York Heritage Digital Collections)

Recreating the aqueduct

The new aqueduct instantly became one of the iconic symbols of the new canal and a popular subject for contemporary artists. We have many good images that can be used as references. One of the finest, painted by John William Hill when he was 18 or 19 years old, is included at the top of this post.

Another good source is a set of watercolor sketches by John Henry Hopkins, an Episcopalian bishop who kept a journal of his travels in November 1825. While his entries regarding the Erie Canal are remarkably concise (“Wednesday, Nov. 9. Still on board the boat proceeding to Utica. Arrived as far as Montezuma by night fall.”), the sketches he created while passing the long hours on deck offer detailed views of the canal only days after it opened. (We will meet Hopkins again in later posts.)

But we will start with an unsigned, undated plan and elevation of an aqueduct found among the papers of John B. Jervis in Rome, New York.

Aqueduct in Blender
A digital scale model of the aqueduct is constructed in Blender, based on John Jervis’ drawing. (Model by Steve Boerner)

John Jervis is a prime example of the self-made man. He began his career as an axman on an early Erie Canal survey party and, largely self-taught, quickly rose through the ranks of the canal’s surveying and engineering corps. In a career that eventually spanned nearly 50 years, he became America’s preeminent civil engineer — a designer of canals, railroads and, most famously, the Croton Aqueduct in New York City.

The title of the drawing is simply “Aqueduct,” and even though someone has pencilled in the words “Little Falls of Mohawk” underneath, it is possible that it represents a generic aqueduct design. In fact it closely resembles stone aqueducts found on the Chesapeake & Ohio Canal and elsewhere. But the dimensions vary only slightly from those provided by the canal commissioners, and the elevation drawing perfectly matches the east face of the aqueduct shown in Hill’s watercolor.

View on the Canal Detail
A detail from John William Hill’s painting also shows the wrought-iron railing on the west parapet of the aqueduct. The aqueduct did not have a towpath, which is why the boat is being poled across by two men. (The New York Public Library)

The Jervis drawing, Hopkins sketch, and Hill painting all indicate that the aqueduct did not have a towpath. This was a surprise at first. But the old canal that it was connected to was not a towpath canal, and the aqueduct’s primary purpose was to serve as a feeder. So this makes sense when you think about it.

These sources provide most of the information needed to start working on a digital model of the aqueduct, which will be the centerpiece of a new scene to be set at Little Falls in 1823.

Aqueduct Ruins
This pile of stones, part of the southern pier of the central arch, is all that remains today of the Little Falls Aqueduct. (Photo by Steve Boerner)

The passing years have not been kind to the Little Falls Aqueduct. Photographs show it in use — or at least watered — through the 19th century. But eventually the old Western Inland Lock Navigation Company canal was filled in to make way for development, depriving the aqueduct of its purpose. Maintenance stopped and, before the turn of the 20th century, it began to crumble. The central arch of this beautiful structure somehow defied the elements more or less intact until the 1990s, when most of it was washed away. Only a remnant, part of the southern pier of this arch, survives today.

Durhams, freighters, scows, and packets

Canal Boat Alexander
A classic Erie Canal freighter named the Alexander appears in this tintype, made around 1860. At left the mule team waits patiently on the towpath, while on the boat the owner, family, and crew pose, dressed in their Sunday best and looking for all the world as though they own the canal as well. The hand-tinted image is reversed because no negative was used in the tintype process; the metal plate itself was exposed to light in the camera. (Courtesy of the George Eastman Museum)

“Before me the stupendous prospect charms the eye. Forty feet from bank to bank the canal spreads. Its depth of four feet can support the mightiest bottom afloat. The hand-built towpath is three hundred and sixty-five miles long. As for the traffic, surely not all the argosies of Greece could equal this spectacle. There are lineboats, packet boats, ballheads, Durhams, gala boats, counter-sterns, toothpick scows, dugouts, arks, flats and periaugers, and always the slow rafts, all transporting such cargoes as were never before conceived of.”—Samuel Hopkins Adams, Canal Bride

From the very beginning, as soon as individual sections were finished and opened, the Erie Canal became jammed with all sorts of vessels. Many were barely seaworthy, rough rafts poled along by owners eager to cash in on the novelty and ease of this new mode of conveyance. Because the canal was built at taxpayer expense, it belonged to every citizen. Anyone who could pony up the toll could use it. And they did.

View on the Canal
An open, square-ended scow hauling stone passes a fancy passenger packet in this detail from “View on the Erie Canal,” painted by John William Hill in 1829. (The New York Public Library)

As with many things concerning the early Erie Canal, details of the boats first used on it are now obscure. Mostly we are left with vague, second-hand accounts that don’t go into much detail.

These report that early freighters were small, 60 or 70 feet long, 7 feet in the beam, and could haul about 30 tons of cargo. By 1830 boats reached their maximum size, 75 feet long, about 14 feet in the beam, and could carry up to 75 tons.

The first set of dimensions are similar to those of a Durham boat, which suggests that some of those Mohawk River watercraft were being diverted to the canal to help fill a sudden demand for boats. Contemporary newspaper reports confirm this.

Geneva Palladium 1823
Boatbuilders began constructing vessels designed for the Erie Canal even before it was completely open. This item, reprinted from Niles Weekly Register in the Feb. 26, 1823 edition of the Geneva Palladium, describes how Durham boats were being replaced by those “built specially for the canal.” (New York Historic Newspapers)

At the time boatbuilding was a traditional occupation in which the master builders did not work from blueprints but from experience and memory. That sort of industry does not turn on a dime. It may be that existing boatyards continued to turn out boats modeled on the Durham long after the first sections of the canal were opened.

New boatyards eager to cash in soon sprang up, particularly in new canal boomtowns such as Utica, Rochester, and Buffalo. They would have built boats designed for maximum profit, as large as the canal’s 15-by-90-foot lock chambers would allow. I suspect that 14-by-75-foot boats would have been common well before 1830.

The canal commissioners allude to this in their 1825 report. “Two boats cannot pass each other upon any of the aqueducts,” they wrote, “and the canals being but 40 feet wide on the surface, and 28 at the bottom, and the boats 14 feet wide, only two can pass each other on the canal . . .”

Target No. 16
Drawing by Tim Caza depicts the wreck of one of the canal boats discovered in 2019 on the floor of Seneca Lake. (Seneca Lake Archaeological & Bathymetric Survey)

Finger Lakes time capsule

Fortunately for us, working Erie Canal boats have been preserved at the bottom of a lake in central New York.

Seneca Lake, one of New York’s Finger Lakes, in 1828 was connected to the Erie Canal by the Cayuga and Seneca Canal. In 1834 a second lateral canal connected Watkins Glen, at the lake’s southern tip, to the Chemung River at Elmira. Canal boats, pulled by horse or mule teams along the laterals, were towed by steamships across the lake. The boats mostly carried Pennsylvania coal, but the Elmira, Corning, and Buffalo Line also advertised a weekly passenger run from Elmira to Buffalo.

View of freighter model in Blender
A model of an Erie Canal freighter based on the one discovered in Seneca Lake, in Blender. The graceful shape of the freighter’s hull becomes apparent in these orthogonal and perspective views. (Model by Steve Boerner)

Canal boats would be towed across the lake until 1878, when the Chemung Canal was abandoned. Not all of them made it. Seneca Lake, very deep and subject to sudden squalls, would claim a few.

An underwater survey using side-scan and multibeam sonar would begin to find them in 2018 and 2019. The Seneca Lake Archaeological & Bathymetric Survey was led by researchers from the Lake Champlain Maritime Museum with the support of New York state and several private organizations, and included members of the team that had discovered an early 19th-century Durham boat in Oneida Lake.

Erie Canal Freighter
Freighter model, shaded and rendered in Terragen, includes a horse bridge stowed on top of the forward cabin, the “bow stable” where the boat’s off-duty team of horses or mules were sheltered. (Model by Steve Boerner)

Promising targets were visited and photographed by an underwater, remotely operated vehicle. The result is a catalog of 19th-century canal vessels, from scows and freighters to, incredibly, what looks to be a passenger packet. (You can support one of the survey sponsors, the Finger Lakes Boating Museum, by purchasing a printed copy of the survey report from their online shop.) Allowing for the fact that all of the wrecks are encrusted with invasive quagga mussels, many are in remarkable condition.

Several of the wrecks have been identified as original Erie Canal-era boats. In the late 19th century the average lifespan of a canal boat was 10 years. If this held true earlier in the century, then some of these boats, which date from the mid-1830s, may have been built in the 1820s.

Erie Canal Scow
Model of an original Erie Cana-era scow, based on one of the wrecks discovered in Seneca Lake. (Model by Steve Boerner)

One of the wrecks was a scow, a open, square-ended design that was outlawed in the 1840s because of the damage its sharp corners caused to canal structures and other boats. But the hulls of the other original Erie-era wrecks have more graceful lines.

Packet Boat
Model based on Target 7, a wreck that appears to be an original Erie Canal-era packet boat.

These shapes seem to differ from what would come later. The boxy lakers of the late 19th century and industrial steel barges of the 20th were, above all, utilitarian. But these were boats. It’s almost as if their builders, faced with the new challenge of crafting vessels for the placid waters of the Erie Canal, still had the unpredictable Mohawk River very much in mind.

Boat test rendering
A scene put together to test some of the new boat models includes the packet (left), freighter (right, rear), and an existing model of a Mohawk River Durham boat (right, front) for comparison. (Rendering by Steve Boerner)

The expanded fleet of models will eventually find its way into new scenes as they are created. Next up will be adding some less-conventional vessels, like the log rafts (which were actually very common) used to transport timber to market, a line boat, and maybe even a periauger.

Without a doubt, the early canal years featured a more diverse and colorful array of watercraft than we can imagine today. For the wide-eyed Yorkers along the canal route, astounded by the sight of boats floating one after another through the landscape, it really must have been quite a spectacle.

The mystery of the missing pumps, part one

Potomac Aqueduct
Large steam-powered pumps were used to drain cofferdams during the construction of the Potomac Aqueduct near Washington, D.C. in the 1830s. (Library of Congress)

Work on the Cayuga Marsh scene had been going really well. The basic terrain was in place and ready for the next step – adding models of the workers and the machines they would have used.

But a brief passage in a primary source suddenly brought everything to a halt. It occurs in an 1824 legislative committee report on a financial scandal that was ending the career of Myron Holley, treasurer of the canal commission.

Alfred Hovey and Abel Wethy, the contractors responsible for the Cayuga Marsh canal section and the Rochester aqueduct, appeared to have been overcompensated by Holley for their work. Suspecting collusion, the committee scrutinized their accounts and visited both locations. The contractors were cleared of wrongdoing, but in its report the committee documented the difficulties they had encountered while constructing the canal through the marsh, where the excavation was often under water.

The report reads: “The great difficulties which had to be encountered in the prosecution of this work, was a subject of deep anxiety to the [canal] commissioners, as this section was a connecting link between finished portions of the canal on each side of it. . . . Hovey & Wethey went on with the work in the winter of 1822, and prosecuted it with great energy. In the prosecution of this work, both summer and winter, the contractors were compelled to keep pumps in operation, night and day, to enable them to go on with the work.”

That last sentence was the show stopper. I had no idea what kind of machines they were talking about.

The handful of other pump references in the canal commissioners’ reports are not helpful. Nowhere do they offer even the briefest description. Why should they? This was pedestrian technology. At the time, everyone knew what an early 19th-century excavation pump looked like and how it worked.

Until we didn’t. As with many other details of early Erie Canal history – especially those concerning the daily lives of working people – much of what we once knew about these poorly documented machines has, apparently, been lost.

What did the machines look like? What were they made of? How were they powered? By hand? Horse? Steam?

It’s an historical puzzle, and until it’s solved the Cayuga scene will have to be put on the shelf. That’s okay – there are plenty of other projects to work on.

Beyond that immediate concern, though, is something larger. The better we understand the technology of the day and the tools that were used, the more we will understand the day-to-day experience of the workers who built the canal.

Adams Basin
Portable steam engines, which powered a variety of tools and machines, were a ubiquitous feature at construction sites along the Barge Canal enlargement in the early 20th century. (Ogden Historical Society)

Could the pumps have been steam-powered?

Let’s deal with this question right away.

The steam engine was undergoing rapid development in the early 19th century. The patent on James Watts’ steam engine expired in 1800, allowing competitors to borrow and improve upon his design. In the United States, Robert Fulton built the first commercially successful steamboat and began regular passenger service on the Hudson River in 1807. The Stourbridge Lion, imported from England, would become the first railroad locomotive in the United States in 1829.

In Triumph at the Falls: The Louisville and Portland Canal (U.S. Army Corps of Engineers, 2007), authors Leland R. Johnson and Charles E. Parrish place the first use of steam power for canal construction in late 1827, when contractors on Kentucky’s Louisville and Portland Canal installed a steam pump to drain lock pit excavations.

A few years later, immense steam engines would drive pumps and machinery for construction of the Potomac Aqueduct in Washington, D.C.

But of course, that all came later. For the workers stuck in the middle of a marsh on the New York frontier in 1822, steam-powered pumps would remain at best a distant dream.

Following the money

Excess water bedeviled contractors and workers not only at Cayuga, but all along the canal line. Pumps – making and repairing them, using and transporting them – are frequently mentioned in receipts issued to contractors and subcontractors.

Engineer Marshall Lewis, who perhaps brought more practical experience to the field than any of his peers, having previously designed and built locks in Waterloo for the Seneca Lock Navigation Company, also built locks and aqueduct foundations for the Erie Canal. Perhaps because of the nature of this work, Lewis spent a lot of money on pumps.

Receipt to George M. Stowits
Receipt made out to George M. Stowits of Currytown, Montgomery County, on July 19, 1827 for the amount of $4 for “making and repairing pump boxes.” (New York State Archives)

For example one of his receipts, from December 1818, records a payment of $12.63 to Alvin Upham of Elbridge “for two Large pumps.” ($12.63 in 1818 would be roughly equivalent to $216 today.) Another, to Nathan Young of Jordan dated January 1819, lists an expense of $2 “for two hands to pump one Night.”

Removing unwanted water from excavations was always labor intensive, and the expense could be considerable.

The worst example might be the lower end of the Deep Cut near its junction with Tonawanda Creek, where work was constantly hampered by flooding. “Pumps, worked by horse power, were introduced on almost every section,” reported the canal commissioners in 1825.

This is confirmed by a December 1825 receipt from Principal Engineer Nathan Roberts to contractors Lane and Snyder that included “the expense of several horse pumps and of 163 days pumping estimated at $15 per day,” which would have come to $2,445, or about $56,715 today.

Earlier that year, in August, Francis B. Lane of Lane and Snyder would provide a receipt to Peter Cater for the amount of $3 for “2 days work at hawling [sic] pump Frame out of the canal.” This may have been a frame for one of the horse pumps, which (I’m guessing) would have been large, semipermanent chain-and-bucket installations.

I can find no other references to horse pumps in the commissioners’ reports or other state documents. But chances are they were used elsewhere when the expense was justified.

Horse Pump
An undated drawing of a chain and bucket pump powered by a horse whim. (The Thomas Jefferson Papers at the Library of Congress)

More interesting are the receipts that provide details on pump construction and repair.

Of particular interest is one issued by Lewis in January 1820 to Jedediah Richards for various items and services, including making patterns for culvert frames, a hammer pattern, three “pile Machienes,” making two pumps “at $7.00 per each,” and “for use of my pit saw.” Richards obviously worked with wood and may have been a sawmill operator – not an unusual occupation for frontier entrepreneurs. This strongly implies that the pumps were made of wood, perhaps from planks produced by his saw.

Richards is also a good example of a familiar early 19th-century archetype – the intrepid Yankee inventor. Between 1828 and 1832 he was awarded three patents: for a machine to punch iron and steel, a machine to manufacture window sashes, and for designs for an elevated railway and the “cars used thereon.” (An earlier 1810 patent, for a machine to manufacture excelsior, or wood wool, is credited to a Jedediah Richards 3rd, of Norfolk, Conn. – perhaps the same person.)

Further evidence that at least some of the pumps were made of wood is provided by a May 1827 receipt from contractor David Fitzgerald to Matthias Langdon for “making two box pumps.” Langdon would later be described by Jeptha Root Simmons in Frontiersmen of New York (Albany, 1882) as the “boss carpenter” of a crew that built a bridge in Fort Plain in 1828.

Blacksmiths provided many parts for pumps and repaired them, too.

A receipt from December 1818 from Lewis to James W. Redfield includes, among other items, “4 straps pumps . . . fix band for pump . . . 1 strap pump . . . 2 small bands for pump.” Local Onondaga County histories identify Redfield as one of the area’s early blacksmiths. What are “straps” and “bands”? I have some ideas which we’ll get into later.

An August 1823 receipt from contractor Caleb Hamill, who built a series of locks along the eastern end of the canal (and who figures prominently in Walter D. Edmond’s fictional narrative Erie Water), to blacksmith Nicholas F. Lighthall includes expenses for framing a pump box, “3 eye bolts for pump brakes,” and “repairing pump spears.”

In a piston pump, which is clearly being described here, the pump box is the chamber in which the piston works; a brake is the pump handle, and a spear is the rod that connects the handle to the piston.

A January 1819 receipt from Lewis to Casey McKay of Jordan includes “Leather to Leather the Boxes for two pumps” – perhaps the same pumps purchased earlier from Alvin Upham. About two weeks later another to Thomas Moseley mentions “Leathering pump boxes for the use of the Erie Canal at Jordan aqueduct.” Many other receipts refer to leather work.

Finally, an example that brings us full circle: a May 1825 receipt to Richardson and Beals for “items of extra work done by them in their subcontract on the Erie Canal through the Cayuga Marshes.” The items include “excavating pump pits below bottom in order to prepare for pumping.”

Summing up

A few things seem to be coming into focus.

First, several kinds of water pumps of various shapes and sizes were likely used along the canal. Many seem to have been fabricated by local craftsmen along the line.

Second, aside from the large horse pumps on the Mountain Ridge and a single reference elsewhere to “screw pumps,” most appear to have been hand-powered piston lift pumps.

Third, some if not most pump boxes were made of wood, and fittings and moving parts were forged from iron. Pump boxes may have been lined with leather to provide a watertight seal, and pistons may have been made of leather.

Fourth, where it was important to completely drain the excavation, pump pits would be dug into the bed of the canal prism. Perhaps the pits were lined with stone or timber to reduce the amount of mud and debris that might clog the pump.

Finally, judging from the quantity of receipts for repair work, these machines regularly broke down and had to be fixed, maybe by the same hands that built them in the first place.

So what did they look like? We’ll explore that in part two.


A final note for those who stayed with me to the end. If you or someone you know is familiar with 1820s construction technology, I’d appreciate hearing from you. Leave a comment here, or contact me via email at smb (at) steveboerner (dot) com.

Rewatering the marsh

Original DEM
Oblique rendering shows the view from the camera position 200 meters above the surface and facing due east. The 1-meter resolution of the elevation data is fine enough to reveal the courses of the Enlarged Erie Canal (left), the original Erie Canal (center), and the present-day canal (right).

There isn’t much left of the Great Cayuga Marsh.

Today a few artificial pools are carefully managed to provide habitats for millions of migrating waterfowl. The surrounding area has been drained to create farmland and to accommodate New York state’s east-west transportation corridor. Railways, expressways, and tamed rivers now course through a landscape that, for millennia, had been regularly inundated by the outflow of Cayuga Lake.

So, as with the Mohawk River Valley at the Noses, we’ll need to do a bit of digital landscaping to restore the historical appearance of this area.

The tentative camera position is just east of May’s Point, near the center of the former marsh. Unlike previous scenes I’d like to show as much of the surrounding landscape as possible, so the camera is placed 200 meters above ground level to give us a bird’s-eye view.

Updated digital landscape
The same view after the landscape has been digitally restored to its 1822 condition.

Almost all of these features will be removed. The Clyde River is moved south (to the right) to match its location in contemporary maps. In the distance, low hills leveled by later development are restored. The partly excavated bed of the canal now extends northeast toward the Seneca River and the hamlet of Montezuma.

Iris versicolor
Colonies of blue flag (Iris versicolor) will populate the edges of some of the pools in the marsh.

New models are made to represent native vegetation including grasses, goldenrod, cattails, and blue flag.

Finished base terrain
In 1822, water levels were 8–10 feet higher than today, and the canal excavation was the only artificial incursion on the landscape.

Water surfaces and foliage are added to restore the landscape’s original appearance. The tentative date for the scene is spring, 1822. Water levels, already eight to 10 feet higher than today, would have been even higher this time of year, flooding pretty much everything including the partially completed canal.

It’s hard to imagine excavating anything under these conditions.

Crossing Cayuga Marsh

Clinton's Ditch
The shape of the original prism is clearly visible in this well-preserved section of the original Erie Canal — Clinton’s Ditch — looking southeast from Armitage Road in Seneca County, New York. (Photo by Steve Boerner)

The view is nondescript, especially on this dreary midwinter day. The partly frozen waterway extends across the flat landscape as far as the eye can see. But the berms on either side still hold their shape. Two hundred years after it was constructed, the prism of this artificial channel is clearly visible.

This is one of few surviving sections of the original Erie Canal – Clinton’s Ditch. How it got here is a story of perseverance and grit.

Geddes Map
James Geddes’ 1817 survey map shows the proposed Erie Canal crossing “Part of the Great Cayuga Marsh” north of Mud Creek (later named the Canandaigua River, and now the Clyde River). The area appears to be uninhabited. (New York State Archives)

Two hundred years ago this area was known as the Great Cayuga Marsh, a notorious expanse of scattered forest, shallow pools, quicksand, and tall grass. The few roads that existed skirted its margins. Early settlers avoided it. They believed that the air itself was unhealthy and the cause of the deadly fever that seemed to strike out of nowhere each summer.

The marsh lay at the bottom of a large, shallow bowl with summits to the east and west. After the canal’s completion, boats arriving from either direction would lock down to this level, cross the Seneca River and the marsh, and then lock back up.

There was no way planners could avoid it, and they knew the crossing would not be easy.

1817 Commissioners Map
Detail from an 1817 map shows the proposed route of the canal (red line, center) from Palmyra to Syracuse. A vertical profile (top) shows locks and elevations. Aside from the final eastern descent to the Hudson River, not shown here, the Cayuga Marsh crossing was the lowest point on the line. (New York Public Library)

In their 1822 report to the state legislature, the canal commissioners wrote that they regarded this section “with much solicitude” and continued: “It cannot be drained at all; the excavation is from five, to nearly eight feet deep: and it was doubted, whether the earth had such a consistence . . . to keep its place in the banks, after the excavation should be effected. The whole level is, besides, subject to be overflowed by the waters of the Seneca river, and the Canandaigua outlet, to the depth of three of four feet, and is actually overflowed for a considerable part of every year.”

1862 Cayuga Marsh Map
Detail of an 1862 map drawn by David Vaughan depicts the eastern section of Cayuga Marsh after the completion of the Enlarged Erie Canal that also shows the line of the original Erie Canal. The hamlet of Montezuma is at upper right; May’s Point is at the lower left. (New York State Archives)

In the spring of 1821, the section was contracted out to Alfred Hovey and Abel Wethey Jr. of Montezuma. They in turn divided the work among several subcontractors. Everything was to be completed by mid-October. But work soon ground to a halt, plagued by a series of misfortunes described a few years later by a legislative committee:

“The contract was entered upon by Hovey & Wethey, in June or July, 1821 – they sub-contracted several miles of the marsh job, at various prices per cubic yard . . . In July these sub-contractors were driven off by floods, and the portions partly excavated were filled with water . . . When the marsh became in some measure dry again, an unprecedented sickness prevailed, which rendered it not only very expensive, but almost impossible to get men to work upon the marsh. Under all these embarrassments, the sub-contractors, without an exception, abandoned their jobs in the fall of 1821.”

Somehow Hovey and Wethey carried on and, with the arrival of winter and firmer ground, continued the work “with great energy.”

Erie Canal Profile
In the margin of his map, David Vaughan drew a profile of the original Erie Canal. The prism here was half again as wide as the standard — 60 feet instead of 40 — and up to six feet deep. Note the text describing “High Water 3 Ft Above Marshes.” (New York State Archives)

The first boat passed through on July 30, 1822. But quicksand, which oozed into the channel from the bottom up, and unpredictable water levels continued to cause problems. This section would remain the weakest link along the entire line until the 1850s, when the canal was finally elevated and widened, and an aqueduct was built to replace the water-level Seneca River crossing.

Missing from the contracts and official reports are the stories of the men who did the digging. We know that sickness – probably malaria – disabled many and discouraged others from taking work there, emptying the line of workers for weeks at a time. We don’t know how many – if any – died from the fever. But for those who stuck it out, we can only imagine what it must have been like to dig, knee- or waist-deep, in quicksand and muck through the winter of 1822 so the line could be opened the following summer.

Tracing the canal

The Great Cayuga Marsh was drained long ago. Today the area is mostly farmland. A few enclaves form the Montezuma National Wildlife Refuge and provide a home or way station for many species of migratory birds. The area is unique because it encompasses tangible remains of all three generations of the Erie Canal – the original Erie (“Clinton’s Ditch”), the Enlarged Erie, and the New York State Barge Canal – all within a few steps of each other.

Digital Elevation Map
Digital elevation data, rendered with Terragen, yields a three-dimensional map of the Earth’s surface without structures or vegetation. This top-down view roughly covers the same area shown in the 1862 map above, and reveals evidence of the original Erie and the Enlarged Erie canals. The Clyde and Seneca rivers, dredged and straightened, were incorporated into the New York State Barge Canal in 1918. (Rendering by Steve Boerner)

To reveal signs of early development, we can use digital elevation data from New York state and the United States Geological Survey. Three-dimensional renderings made with this data show the Earth’s surface stripped of all foliage, buildings, and bridges.

For example, this image includes the faint outline of the original Erie Canal (completed 1825), as well as the original Cayuga & Seneca Canal (completed 1828). Remains of the Enlarged Erie Canal (completed 1862) are more prominent, as are the environmental-scale alterations of the New York State Barge Canal (completed 1918), which reconfigured the courses of the Clyde and Seneca Rivers.

Elevation Map Detail
Enlarged detail from shows the juxtaposition of the three generations of Erie Canal engineering: The ghostly image of the original canal (filled in along this section) in the center, flanked by the Enlarged Erie Canal and the New York State Barge Canal. (Rendering by Steve Boerner)

The Cayuga Marsh crossing will be the subject of the next scene, and this real-world elevation data will be used to form the underlying terrain. As with previous scenes, digital landscaping will be employed to erase the marks of human development and to turn back the clock two hundred years.

The legend of Lars Larson

The Legend of Lars Larson
Lars Larson skates from Albany to Holley, New York, a distance of about 300 miles, on the frozen Erie Canal in late 1825. (Image copyright 2021 by Steve Boerner)

Of all the accounts of the early Erie Canal, this one holds a particular appeal. If you are an American of Norwegian descent, chances are you’re familiar with it. If not, read on. It’s a good story.

By the early 19th century first-hand accounts of life in the United States were beginning to reach ordinary people on the other side of the Atlantic. Stories of rich farmland ready for the taking and freedom to worship were hard to ignore.

Among those listening was a community of people in Stavanger, Norway, the core of which consisted of a small group of Quakers facing discrimination from their country’s Lutheran government. They dispatched an agent to America to investigate. When he returned with a favorable report and title to farmland bordering Lake Ontario in upstate New York, they pooled their resources, purchased a 54-foot sloop named Restoration, and made plans to emigrate.

A prominent member of the group, a ship’s carpenter named Lars Larson, and his wife, Martha, joined 50 other passengers and crew and set sail on July 4, 1825. After a harrowing 98-day voyage across the Atlantic – during which Martha gave birth, increasing the ship’s complement by one – the weary immigrants bravely sailed into New York harbor on October 9.

The occasion was noted by the New York Daily Advertiser in an item reprinted in newspapers across the Northeast:

A novel sight. — A vessel has arrived at this port, with emigrants, from Norway. The vessel is very small, measuring as we understand only about 360 Norwegian lasts, or forty-five American tons, and brought forty-six passengers, male and female, all bound to Ontario county, where an agent, who came over some time since, purchased a tract of land. The appearance of such a party of strangers, coming from so distant a country, and in a vessel apparently ill calculated for a voyage across the Atlantic, could not but excite an unusual degree of interest. They have had a voyage of fourteen weeks; and are all in good health and spirits.”

The warm welcome did not last. Within days the Restoration was seized and its captain jailed by the U. S. Customs Service. United States law restricted the number of passengers that could be carried by arriving vessels, and the tiny, dangerously overloaded sloop carried 21 passengers over the limit.

NY Evening Post
The New-York Evening Post noted the arrival of the “Danish” sloop Restoration on October 10, 1825. (New York State Historic Newspapers)

The Sloopers, as they were soon christened, had hoped to sell the Restoration upon arrival to pay expenses. Instead, their ship had been impounded and they were facing a fine of $3,150. But the local Quaker community rallied and financed the final leg of their journey, first by steamboat to Albany, then west on the newly completed Erie Canal.

According to tradition along the way they encountered the canal packet Seneca Chief, bearing Governor DeWitt Clinton, other dignitaries, and two casks of Erie Lake water en route to New York and the “wedding of the waters.” The westbound boat would have had the right of way, so the Seneca Chief dropped its towline and pulled aside, saluting the new immigrants as they passed.

After disembarking at Holley, the hardy Sloopers walked the final 10 miles north to their homesteads in the town of Kendall.

Larson and two others had remained behind to sort things out. They appeared before Judge William Peter van Ness of the U.S. District Court for the Southern District of New York on October 14 with a petition that was forwarded to President John Quincy Adams, who issued a full pardon on November 15.

Larson made his way to Albany, where he found the canal frozen solid. Undeterred, he purchased a pair of ice skates and skated the 300-mile distance along the canal to be reunited with his family.

So the story goes.

Norse-American centennial stamp
Stamp issued by the United States in 1925 celebrated the arrival of the “Norwegian Mayflower” 100 years earlier. (United States Postal Service via Wikimedia Commons)

Fact or fiction?

Some of the information for this post is drawn from a paper published in Norwegian-American Studies, the journal of the Norwegian-American Historical Association. In it the author, Richard L. Canuteson, wryly notes that over time some of the story’s retelling “has been based upon careful investigation, part of it on erroneous interpretation or translation, and part on family tradition — which by its very nature and the method by which it has been passed down from one generation to another may be less than accurate.”

While the arrival of the Restoration and ensuing court case are well documented, the account of Larson’s extraordinary trek along the iced-over canal at first appears to be a traditional embellishment. But hold on.

Long-distance skating, or tour skating, is popular today in Nordic countries. A cursory Internet query turns up the fact that casual tour skaters can skate up to 30 kilometers a day, while more experienced skaters can travel up to 100 kilometers — or more. Average speeds vary between 10 and 20 kilometers, roughly 6 to 12 miles, per hour.

At 6 miles per hour Larson could have completed the trip in 50 hours, or five grueling 10-hour days. He would have been hindered by obstacles: locks, stranded boats, uneven ice. But someone who had survived a 98-day Atlantic crossing may have looked at this as just one more thing to take in stride. Under the right conditions, he could have done it.

But what were the conditions?

On October 10, 1825, the same day it announced the arrival of the Restoration, the New-York Evening Post also published a small item about the weather. “We have experienced several days of unusually warm weather for the month of October,” it read. “Last Sunday the thermometer stood at 85.”

Recall, though, that this is upstate New York we’re discussing here. A few short weeks later the story was very different. On November 22 the Evening Post reported that “above Schenectady the canal was partially closed with ice. . . . But last evening the weather was greatly moderated, and we have hopes that canal navigation will be free a few days more.”

Troy Sentinel
Even though the canal would officially remain open until December 5, 1825, the Troy Sentinel reported on November 29 that ice had effectively ended the shipping season. (New York State Historic Newspapers)

On November 30 Canandaigua’s Ontario Repository wrote that the “Buffalo papers state that the Packet Boats between there and Rochester, have stopped running for this season. The cold weather we experienced a few days since, closed the canal in several places.”

According to state records, the canal that year was officially closed to navigation on December 5. But these newspaper items show that during the final weeks navigation was an on-again, off-again affair as traffic struggled against the encroaching ice. Packet lines, sensitive to any interruptions, would have halted service weeks earlier.

So by the time Larson reached Albany it’s likely that much of the canal was covered with ice “several inches thick.” Even if the canal wasn’t frozen end to end, he could have skated the iced-over sections while walking or finding other transportation in between. His long-distance ice-skating feat, the stuff of legend, may be based on fact.

Lars and Martha settled in Rochester, where he prospered as a boat builder alongside the new canal. Over the years their home in the city’s Third Ward (now the Corn Hill neighborhood) became a way station for thousands of Norwegian immigrants making their way west.

Sadly, Larson’s life ended unexpectedly by drowning in the canal that had carried him into America and on which he made his living. His body was recovered from a lock near Schenectady on November 13, 1845. He was 59 years old. To the end of her days Martha maintained that Lars had been murdered, pushed into the icy water in the course of a business deal gone bad. But nothing was ever proved.

Within a few years of their arrival most of the Norwegian families of Kendall, disappointed with the poor quality of the land, moved to a new community along the Fox River in Illinois. Today a handful of Norwegian surnames in the Kendall phone directory, the signposts along Norway Road, and a couple of historical markers are among the few reminders of the original Slooper settlement.

Finishing the Noses

Navigating the Noses
Passengers on the eastbound packet Stephen van Rensselaer take in the early-morning scenery along the Mohawk River in September 1825.

The Mohawk River scene set at the Noses is finally finished. Besides the packet boat passengers, it now includes the tandem rig of three horses and driver. Two Durham boats navigate along the river in the background.

The scene is set at 8:55 a.m. September 15, 1825. The canal will officially open within a few weeks, but already a collaboration of three packet lines provides passenger service between Schenectady and Lockport. Boats running in both directions depart Utica every evening. If my math is right the eastbound boat should be in the vicinity of the Noses by the following morning.

In those days the Mohawk Valley was considered to be one of the most scenic areas of the country. Harriet Martineau, the English sociologist, feminist, and writer who passed through twice in the 1830s – once by packet and once by rail – perhaps described it best in her book Society in America:

“The aspect of the valley was really beautiful last June. It must have made the Mohawk Indians heart-sore to part with it in its former quiet state; but now there is more beauty, as well as more life. There are farms, in every stage of advancement, with all the stir of life about them; and the still, green graveyard belonging to each, showing its white palings and tombstones on the hill-side, near at hand. Sometimes a small space in the orchard is railed in for this purpose. In a shallow reach of the river there was a line of cows wading through, to bury themselves in the luxuriant pasture of the islands in the midst of the Mohawk. In a deeper part, the chain ferry-boat slowly conveyed its passengers across. The soil of the valley is remarkably rich, and the trees and verdure unusually fine. The hanging oak-woods on the ridge were beautiful; and the knolls, tilled or untilled; and the little waterfalls trickling or leaping down, to join the rushing river. Little knots of houses were clustered about the locks and bridges of the canal; and here and there a village, with its white church conspicuous, spread away into the middle of the narrow valley. The green and white canal boats might be seen stealing along under the opposite ridge, or issuing from behind a clump of elms or birches, or gliding along a graceful aqueduct, with the diminished figures of the walking passengers seen moving along the bank. On the other hand, the rail-road skirted the base of the ridge, and the shanties of the Irish labourers, roofed with turf, and the smoke issuing from a barrel at one corner, were so grouped as to look picturesque, however little comfortable. In some of the narrowest passes of the valley, the high road, the rail-road, the canal, and the river, are all brought close together, and look as if they were trying which could escape first into a larger space.”

Everyday clothing

Raftsmen Playing Cards
Early American painter George Caleb Bingham had a keen eye for detail and a precise brush to match, as this detail from “Raftsmen Playing Cards,” completed in 1847, shows. (St. Louis Art Museum via Wikimedia)

What to wear?

Adding human figures to a digital scene is one thing. Providing them with accurate historical clothing is something else.

Plenty of online sources pop up when you search for early 19th century clothing, complete with fashion plates and examples of clothing worn by the upper classes. But you need to go deeper to find information about everyday clothing worn by working people.

Among the best sources of visual information are early American genre painters such as William Sydney Mount, George Caleb Bingham, and Francis William Edmonds. Of these I’m most familiar with Bingham, who lived and painted on the Missouri frontier in the early 1800s. At that time the western New York frontier was just as raw, so his depictions of flatboat men and farmers apply as well to the early Erie Canal.

Patterns for men’s work shirts
Waste not, want not: Diagrams from “The Workwoman’s Guide” demonstrate how to use every square inch of fabric when cutting out parts for men’s work shirts. (Oxford University via Google Books)

But while paintings can provide context and color, you still need patterns. Several 19th-century tailor’s guides are available in digital format, and I’ve already mentioned how useful they can be when creating upscale digital clothing. For working-class folks, there is The Workwoman’s Guide, published in 1840.

Its full title: The Workwoman’s Guide, Containing Instructions to the Inexperienced in Cutting Out and Completing Those Articles of Wearing Apparel, &c., which are Usually Made at Home: Also, Explanations on Upholstery, Straw-platting, Bonnet-making, Knitting, &c. A mouthful, to be sure, but seriously: everything you might want to know about running an early 19th-century household is in this book.

Besides historical sources, these recent references have been helpful:

  • Pattern Cutting for Men’s Costume, by Elizabeth Friendship (Bloomsbury, 2008)
  • The Mountain Man’s Sketch Book, Volume One, by James Austin Hanson and Kathryn J. Wilson (The Fur Press, 1976)
  • Making Working Women’s Costume, by Elizabeth Friendship (The Crowood Press, 2018)
  • Regency Women’s Dress, by Cassidy Percoco (Batsford, 2015)
References for fashionable young woman
Sources for a fashionable young packet passenger include this plaid gingham gown (left) and a straw bonnet imported from France, both dating from the early 19th century. (Gown: Old Sturbridge Village, accession number 26.33.63; bonnet: Museum of Fine Arts, Boston; The Elizabeth Day McCormick Collection, accession number 44.189)

Finally, thousands of historical artifacts – many stored out of sight in the permanent collections of museums – are now virtually accessible in online databases. Though the collections are biased toward middle- and upper-class objects, they still provide a fascinating (and searchable) real-world check on the things you may find in paintings and old pattern books.

I use a program called Marvelous Designer to create natural-looking clothing for my scenes. It is a simplified version of more powerful applications used by professional clothing designers, and is used by digital artists who create animated films and video games. This project would not be possible without this remarkable tool.

Fashionable woman in Marvelous Designer
Patterns for the young woman’s gown are created and stitched together in Marvelous Designer, which then handles the cloth simulations and drapes the clothing on the posed model. Marvelous Designer is capable of simulating specific types of fabrics, from heavy canvas to light gauze. In this case the fabric is set to simulate silk taffeta, which was used for the original gown.

The workflow is simple: You draw the patterns and stitch them together, fitting everything to a 3D human model. Designer uses simulated gravity to make the clothing drape and fold naturally. Short animations move the models into the poses needed for the scene.

Here are a couple of examples of clothing created for packet boat passengers. (Packet boat travel was very democratic, with people of all classes crowded together on the boats.)

Young woman’s clothing in Substance Painter
Digital clothing created in Marvelous Designer is transferred to Substance Painter for shading, which gives the fabric its surface texture and color.

For the first, a well-to-do young woman from back East, two artifacts seemed to fit the bill: a gown from Old Sturbridge Village, and a bonnet from the Museum of Fine Arts in Boston.

After the patterns are cut out and and assembled in Marvelous Designer, the finished clothing is moved into Substance Painter, where patterns and colors are applied, as well as a texture to mimic the shiny surface of silk.

References for Quaker woman
References for a Quaker woman’s clothing include this poke bonnet (left) and taffeta gown, both dating from the early 19th century. (Bonnet: Brooklyn Museum Costume Collection at The Metropolitan Museum of Art; gift of the Brooklyn Museum, 2009; gift of Grace Coleman, 1927; accession number 2009.300.2689); Gown: Museum of Fine Arts, Boston; gift of Mrs. Grosvenor Calkins, accession number 52.1769)

Western New York was home to several early Quaker settlements, so it also seemed appropriate to include a Quaker couple.

The woman’s clothing is based on objects from the Museum of Fine Arts and the Metropolitan Museum of Art in New York. The man’s clothing is based on a variety of sources including Friendship’s Pattern Cutting for Men’s Costume.

Quaker couple
A test rendering of our Quaker couple, ready to be placed on the deck of the packet boat.

While the Quakers espoused plain dress, that meant simple designs, not inexpensive fabrics. The woman’s dress is again made of silk taffeta. The man’s shirt is cotton. Wool trousers and the ubiquitous straw hat complete his outfit.

These simple garments have the advantage of reusability. With small changes they can be recycled for use in other scenes, or even for different figures in the same scene.

Taking the packet

A tandem team of three horses tows a passenger packet in this detail from “View on the Erie Canal” by John William Hill. The 1829 painting is one of the finer early depictions of the canal. (I. N. Phelps Stokes Collection of American Historical Prints, New York Public Library)

In 1820 a new kind of watercraft appeared on completed sections of the Erie Canal.

Named after the packet ships that sailed the North Atlantic between Europe and the eastern seaboard, the new Erie Canal passenger boats were towed by two or three horses at a brisk clip of 4 to 6 miles per hour. Even before the canal was finished, packet lines springing up along completed sections boasted of making the trip between Schenectady and Utica in 24 hours, and from Utica to Rochester in two days. A far cry, indeed, from the days or weeks previously required when traveling by stage over wretched roads.

Travelers had never experienced anything quite like it: The quiet, smooth experience of floating across the landscape was completely new.

Packet Boat Engraving
Woodcut of a packet boat, published in “One Hundred Years’ Progress of the United States,” 1871. (Internet Archive)

In Erie Water West, Ronald E. Shaw quotes a Rochester pioneer about to take his first journey by packet: “Commending my soul to God, and asking his defense from danger, I stepped on board the canal boat, and was soon flying towards Utica.”

During its heyday, packet travel became commonplace and the Erie Canal a thoroughfare not only for local inhabitants but also for thousands of immigrants making their way to Buffalo and on to the upper Midwest. But the packet era did not last long. By the 1850s, once the railroads began to carry most long-distance passenger traffic, it was over.

Packet Boat Advertisement
Notices from competing packet boat lines run side by side in the Dec. 3, 1823 edition of the Wayne County Sentinel. (NYS Historic Newspapers)

Near the end, a humorous magazine sketch by Harriet Beecher Stowe noted just how prosaic packet travel had become:

“. . . in a canal boat there is no power, no mystery, no danger; one cannot blow up, one cannot be drowned, unless by some special effort: one sees clearly all there is in the case – a horse, a rope, and a muddy strip of water – and that is all.”

Even so, two hundred years later romantic images of packet boats linger in our collective memory and often come to mind when the Erie Canal is mentioned.

Packet Boat Waybill
Waybill for the William C. Bouck, dated Oct. 21, 1823, lists 12 passengers and total receipts of $60.67. (Oneida County Historical Society)

Building our packet

There are no photographs of early packet boats, of course, nor anything resembling construction plans. We do have many woodcuts and engravings of varying quality and detail, as well as first-person accounts by packet passengers. Most accounts dwell on the experience of packet boat travel and the variety of the passing landscape. But they don’t say much about the packets themselves, perhaps because the boats were so ubiquitous that the writers felt no need to describe them. An exception is a detailed account written by “A Traveller” and published in The Freeman’s Journal of Cooperstown in August 1821:

“There are two packet-boats, the Montezuma and Oneida Chief, owned by the Erie Canal Navigation Company (incorporated). These boats are 77 feet in length and 13 in width; are each navigated by 7 hands, viz. a captain, 2 helmsmen, 1 bowsman, a steward, a cabin-boy, and cook . . . The forward cabin is used for lodging, and is handsomely finished off with 12 births [sic], each having a good bed or mattress, and every suitable accommodation. Next, and in the centre, is a dining cabin, 18 feet by 13, where 25 passengers can conveniently be seated at table; and on the sides of this cabin are settees; to that, with these and mattresses, good lodgings for up to 30 passengers can be had. More than this number cannot be well accommodated in their boats. Next to this cabin is a gangway and bar, which are rented to the steward at $250 for the season; at which bar, passengers are furnished with as good refreshments as can be had on board our steam boats, and at as cheap a rate. Next, and back of this, is a kitchen, with all the cooking apparatus, and lodgings for the crew.”

Packet Boat Quad View
Quad view of the packet boat model in Blender.

Our traveler doesn’t mention the driver, who would have ridden the last horse in the two- or three-horse tandem team that provided the motive power for the packet. Perhaps he wasn’t counted as a member of the crew, as drivers and teams were switched every few miles along the route.

My packet boat model will represent the Stephen van Rensselaer, which was operated by the Utica & Schenectady Packet Boat Company on a daily schedule between the two cities. (In Utica, passengers could catch an Erie Canal Navigation Company packet headed for Rochester.) For the dimensions and design I’m relying on packet boat plans drawn by Robert E. Hager, an amateur historian and extraordinary draftsman whose drawings are preserved at the Chittenango Landing Canal Boat Museum. Our packet is 70 feet in length and 14 wide.

Packet Boat Shading
Packet boat surface colors and textures are added in Substance Painter.

Contemporary sources often describe packet boats as brightly painted without being very specific. Woodcuts and engravings are no help, naturally, but John William Hill’s watercolor View of the Erie Canal gives us some subtle hints, as do some everyday early 19th-century artifacts. Many early packets were given patriotic names (or like ours, named after one of the canal commissioners), so I’ve chosen a combination of red, white, and blue for the Stephen van Rensselaer.

Packet Test Rendering
The finished packet model is placed in the scene for a test rendering.

As a test the new model is placed in the scene and rendered, along with two versions of the Durham boat model on the distant Mohawk River. Still much work to do here: passengers, a steersman, the team of horses and driver, and other details need to be added. But the picture is starting to come together.